Busca avançada
Ano de início
Entree


Fire Detection with Multitemporal Multispectral Data and a Probabilistic Unsupervised Technique

Texto completo
Autor(es):
Negri, Rogerio G. ; Luz, Andrea E. O. ; Frery, Alejandro C. ; Casaca, Wallace ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS; v. N/A, p. 4-pg., 2023-01-01.
Resumo

The frequency of forest fires has increased significantly in recent years across the planet. Events of this nature motivate the development of automated methodologies aimed at mapping areas affected by fire. In this context, we propose a method capable of accurately mapping areas affected by fire using time series of remotely sensed multispectral images by statistical modeling and classification. In order to evaluate the introduced proposal, we carry out a case study on a region in Brazil with recurrent history of forest fires. Furthermore, images obtained by the Landsat-8 satellite are used in this case study. Comparisons with an alternative method are included in this analysis. (AU)

Processo FAPESP: 21/03328-3 - Desenvolvimento de novas metodologias e soluções tecnológicas inteligentes em segmentação de imagens digitais e enfrentamento da COVID-19
Beneficiário:Wallace Correa de Oliveira Casaca
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/01305-6 - Avanços teóricos em detecção de anomalias e construção de sistemas de monitoramento ambiental
Beneficiário:Rogério Galante Negri
Modalidade de apoio: Auxílio à Pesquisa - Regular