Busca avançada
Ano de início
Entree


Morse and Lyapunov spectra and dynamics on flag bundles

Texto completo
Autor(es):
San Martin, Luiz A. B. ; Seco, Lucas
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Ergodic Theory and Dynamical Systems; v. 30, p. 30-pg., 2010-06-01.
Resumo

In this paper we study characteristic exponents of flows in relation with the dynamics of flows on flag bundles. The starting point is a flow on a principal bundle with semi-simple group G. Projection against the lwasawa decomposition G = K AN defines an additive cocycic over the flow with values in a = log A Its Lyapunov exponents (limits along trajectories) and Morse exponents (limits along chains) are studied. A symmetric property of these spectral sets is proved, namely invariance under the Weyl group We also prove that these sets are located in certain Weyl chambers. defined from the dynamics on the associated flag bundles. As a special case linear flows on vector bundles are considered. (AU)

Processo FAPESP: 02/10246-2 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos
Beneficiário:Luiz Antonio Barrera San Martin
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 04/00392-7 - A teoria do indice de conley aplicada a fluxos em fibrados.
Beneficiário:Lucas Conque Seco Ferreira
Modalidade de apoio: Bolsas no Brasil - Doutorado