Busca avançada
Ano de início
Entree


On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof

Texto completo
Autor(es):
Bissacot, Rodrigo ; Freire, Ricardo Dos Santos, Jr.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Ergodic Theory and Dynamical Systems; v. 34, p. 13-pg., 2014-08-01.
Resumo

We prove that if Sigma(A) (N) is an irreducible Markov shift space over N and f : Sigma(A) (N) -> R is coercive with bounded variation then there exists a maximizing probability measure for f, whose support lies on a Markov subshift over a finite alphabet. Furthermore, the support of any maximizing measure is contained in this same compact subshift. To the best of our knowledge, this is the first proof beyond the finitely primitive case in the general irreducible non-compact setting. It is also noteworthy that our technique works for the full shift over positive real sequences. (AU)

Processo FAPESP: 11/16265-8 - Dinâmica em baixas dimensões
Beneficiário:Edson Vargas
Modalidade de apoio: Auxílio à Pesquisa - Temático