Busca avançada
Ano de início
Entree


Intelligent Systems Applied on the Estimation of Bearing Faults in Inverter-fed Induction Motors

Texto completo
Autor(es):
Godoy, W. F. ; Palacios, R. H. C. ; da Silva, I. N. ; Goedtel, A. ; da Silva, P. P. D. ; IEEE
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY; v. N/A, p. 6-pg., 2016-01-01.
Resumo

This paper proposes an approach based on intelligent systems for the classification and diagnosis of bearing fault evolution in inverter-fed induction motors, operating at steady state under a wide range of frequencies and load torque. Due to its robustness and low cost, induction motors are used in various industrial applications. In this work, the classifiers Fuzzy Artmap (FAM), Support Vector Machine - Sequential Minimal Optimization (SVM/SMO), k-Nearest Neighbours (k-NN) and Multilayer Perceptron (MLP) are used for the diagnosis and classification of hearing faults. Results obtained from 1173 experimental tests collected in the laboratory arc presented to validate this proposal. The obtained results shows that this approach can accurately classify healthy and bearing defects in inverter-fed induction motors. (AU)

Processo FAPESP: 11/17610-0 - Monitoramento e controle de sistemas dinâmicos sujeitos a falhas
Beneficiário:Roberto Kawakami Harrop Galvão
Modalidade de apoio: Auxílio à Pesquisa - Temático