Busca avançada
Ano de início
Entree


Duality between eigenfunctions and eigendistributions of Ruelle and Koopman operators via an integral kernel

Texto completo
Autor(es):
Giulietti, P. ; Lopes, A. O. ; Pit, V.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Stochastics and Dynamics; v. 16, n. 3, p. 22-pg., 2016-06-01.
Resumo

We consider the classical dynamics given by a one-sided shift on the Bernoulli space of d symbols. We study, on the space of Holder functions, the eigendistributions of the Ruelle operator with a given potential. Our main theorem shows that for any isolated eigenvalue, the eigendistributions of such Ruelle operator are dual to eigenvectors of a Ruelle operator with a conjugate potential. We also show that the eigenfunctions and eigendistributions of the Koopman operator satisfy a similar relationship. To show such results we employ an integral kernel technique, where the kernel used is the involution kernel. (AU)

Processo FAPESP: 11/12338-0 - Transformação de Bowen-Series e formalismo termodinâmico para superfícies hiperbólicas de volume finito
Beneficiário:Vincent Pit
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado