Busca avançada
Ano de início
Entree


A Study in Pairwise Clustering for Bi-dimensional Irregular Strip Packing Using the Dotted Board Model

Texto completo
Autor(es):
Sato, Andre Kubagawa ; Setter Bauab, Guilherme Elias ; Martins, Thiago de Castro ; Guerra Tsuzuki, Marcos de Sales ; Gomes, Antonio Miguel
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: IFAC PAPERSONLINE; v. 51, n. 11, p. 6-pg., 2018-01-01.
Resumo

The bi-dimensional irregular strip packing is a difficult problem in the cutting and packing field. Its main feature, and central source of complexity, is the irregularity of the shape of the items. Consequently, mathematical solvers are only able to obtain optimal solutions for small instances and heuristics are often employed in the literature. In such algorithms, it is not possible to guarantee that the optimum solution is found. In such cases, a restricted version of the problem can be adopted in order to improve the performance. One possible restriction is the adoption of pairwise clustering, i.e., elimination of items by joining two pieces. In this work, an automatic pairwise clustering method is proposed for the dotted board model, which limits the placement of items to equally distributed discrete points. The clustered problems are then used as input to an irregular strip packing solver. The results obtained in this paper can be used as an initial guideline for the use of clustering in a discrete grid, which was beneficial in some of the tested cases. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 10/18913-4 - Estudo sobre translações aplicadas a polígonos de obstrução para que operações booleanas não regularizadas criem regiões de obstrução degeneradas
Beneficiário:Marcos de Sales Guerra Tsuzuki
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 10/19646-0 - Translações Aplicadas a Polígonos de Obstrução para que Regiões Livres de Colisão Degeneradas Sejam Criadas por Operações Booleanas Não Regularizadas
Beneficiário:André Kubagawa Sato
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 13/26532-9 - Desenvolvimento de algoritmo massivamente paralelo com GPGPU para criar a região obstrutiva montanhosa discreta
Beneficiário:Marcos de Sales Guerra Tsuzuki
Modalidade de apoio: Auxílio à Pesquisa - Regular