Texto completo | |
Autor(es): |
Ribeiro, G. A. P.
;
Kluemper, A.
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT; v. N/A, p. 31-pg., 2019-01-01. |
Resumo | |
We study the correlation functions of SU (n), n > 2, invariant spin chains in the thermodynamic limit. We formulate a consistent framework for the computation of short-range correlation functions via functional equations which hold even at finite temperature. We give the explicit solution for two- and three-site correlations for the SU(3) case at zero temperature. The correlators do not seem to be of factorizable form. From the two-site result we see that the correlation functions are given in terms of Hurwitz's zeta function, which differs from the SU (2) case where the correlations are expressed in terms of Riemann's zeta function of odd arguments. (AU) | |
Processo FAPESP: | 15/01643-8 - Propriedades físicas de modelos integráveis |
Beneficiário: | Giuliano Augustus Pavan Ribeiro |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |
Processo FAPESP: | 17/16535-1 - Integrabilidade e propriedades físicas de cadeias quânticas e modelos de vértices |
Beneficiário: | Giuliano Augustus Pavan Ribeiro |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |