| Texto completo | |
| Autor(es): |
Ramos, Jonathan S.
;
Watanabe, Carolina Y. V.
;
Nogueira-Barbosa, Marcello H.
;
Traina, Agma J. M.
;
Assoc Comp Machinery
Número total de Autores: 5
|
| Tipo de documento: | Artigo Científico |
| Fonte: | SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING; v. N/A, p. 8-pg., 2019-01-01. |
| Resumo | |
Segmentation of medical images is a critical issue: several process of analysis and classification rely on this segmentation. With the growing number of people presenting back pain and problems related to it, the automatic or semi-automatic segmentation of fractured vertebral bodies became a challenging task. In general, those fractures present several regions with non-homogeneous intensities and the dark regions are quite similar to the structures nearby. Aimed at overriding this challenge, in this paper we present a semi-automatic segmentation method, called Balanced Growth (BGrowth). The experimental results on a dataset with 102 crushed and 89 normal vertebrae show that our approach significantly outperforms well-known methods from the literature. We have achieved an accuracy up to 95% while keeping acceptable processing time performance, that is equivalent to the state-of-the-art methods. Moreover, BGrowth presents the best results even with a rough (sloppy) manual annotation (seed points). (AU) | |
| Processo FAPESP: | 17/23780-2 - Recuperação por conteúdo de imagens médicas para apoio a decisão clínica usando a abordagem radiômica |
| Beneficiário: | Jonathan da Silva Ramos |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |
| Processo FAPESP: | 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD) |
| Beneficiário: | Agma Juci Machado Traina |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |