Busca avançada
Ano de início
Entree


Integrating Agent Advice and Previous Task Solutions in Multiagent Reinforcement Learning

Autor(es):
Da Silva, Felipe Leno ; Assoc Comp Machinery
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS; v. N/A, p. 2-pg., 2019-01-01.
Resumo

Reinforcement learning methods have successfully been applied to build autonomous agents that solve challenging sequential decision-making problems. However, agents need a long time to learn a task, especially when multiple autonomous agents are in the environment. This research aims to propose a Transfer Learning framework to accelerate learning by combining two knowledge sources: (i) previously learned tasks; and (ii) advice from a more experienced agent. The definition of such framework requires answering several challenging research questions, including: How to abstract and represent knowledge, in order to allow generalization and posterior reuse?, How and when to transfer and receive knowledge in an efficient manner?, and How to consistently combine knowledge from several sources? (AU)

Processo FAPESP: 15/16310-4 - Transferência de Conhecimento no Aprendizado por Reforço em Sistemas Multiagentes
Beneficiário:Felipe Leno da Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 16/21047-3 - ALIS: Aprendizado Autônomo em Sistemas Inteligentes
Beneficiário:Anna Helena Reali Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/00344-5 - Reusando soluções de tarefas prévias em aprendizado por reforço multiagente
Beneficiário:Felipe Leno da Silva
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado