Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Incompressible Euler as a limit of complex fluid models with Navier boundary conditions

Texto completo
Autor(es):
Busuioc, A. V. [1, 2] ; Iftimie, D. [3] ; Lopes Filho, M. C. [4] ; Lopes, H. J. Nussenzveig [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Lyon, F-42023 St Etienne - France
[2] Univ St Etienne, Lab Math, Fac Sci & Tech, F-42023 St Etienne - France
[3] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne - France
[4] Univ Estadual Campinas UNICAMP, Depto Matemat IMECC, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Journal of Differential Equations; v. 252, n. 1, p. 624-640, JAN 1 2012.
Citações Web of Science: 13
Resumo

In this article we study the limit alpha -> 0 of solutions of the alpha-Euler equations and the limit alpha, v -> 0 of solutions of the second grade fluid equations in a bounded domain, both in two and in three space dimensions. We prove that solutions of the complex fluid models converge to solutions of the incompressible Euler equations in a bounded domain with Navier boundary conditions, under the hypothesis that there exists a uniform time of existence for the approximations, independent of a and v. This additional hypothesis is not necessary in 2D, where global existence is known, and for axisymmetric flows without swirl, for which we prove global existence. Our conclusion is strong convergence in L(2) to a solution of the incompressible Euler equations, assuming smooth initial data. (C) 2011 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 07/51490-7 - Aspectos matemáticos da dinâmica dos fluidos incompressíveis
Beneficiário:Milton da Costa Lopes Filho
Modalidade de apoio: Auxílio à Pesquisa - Temático