Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bayesian analysis of skew-normal independent linear mixed models with heterogeneity in the random-effects population

Texto completo
Autor(es):
Barbosa Cabral, Celso Romulo [1] ; Lachos, Victor Hugo [2] ; Madruga, Maria Regina [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Amazonas, Dept Estat, Manaus, Amazonas - Brazil
[2] Univ Estadual Campinas, Dept Estat, IMECC, BR-13083859 Sao Paulo - Brazil
[3] Fed Univ Para, Fac Estat, BR-66059 Belem, Para - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF STATISTICAL PLANNING AND INFERENCE; v. 142, n. 1, p. 181-200, JAN 2012.
Citações Web of Science: 13
Resumo

We present a new class of models to fit longitudinal data, obtained with a suitable modification of the classical linear mixed-effects model. For each sample unit, the joint distribution of the random effect and the random error is a finite mixture of scale mixtures of multivariate skew-normal distributions. This extension allows us to model the data in a more flexible way, taking into account skewness, multimodality and discrepant observations at the same time. The scale mixtures of skew-normal form an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal, skew-Student-t, skew-slash and the skew-contaminated normal distributions as special cases, being a flexible alternative to the use of the corresponding symmetric distributions in this type of models. A simple efficient MCMC Gibbs-type algorithm for posterior Bayesian inference is employed. In order to illustrate the usefulness of the proposed methodology, two artificial and two real data sets are analyzed. (C) 2011 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 10/01246-5 - Modelos lineares e não lineares com distribuições de misturas de escala skew-normal
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Bolsas no Exterior - Pesquisa