Busca avançada
Ano de início
Entree


Independent block identification in multivariate time series

Texto completo
Autor(es):
Leonardi, Florencia ; Lopez-Rosenfeld, Matias ; Rodriguez, Daniela ; Severino, Magno T. F. ; Sued, Mariela
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF TIME SERIES ANALYSIS; v. 42, n. 1, p. 15-pg., 2020-08-26.
Resumo

In this-30 work we propose a model selection criterion to estimate the points of independence of a random vector, producing a decomposition of the vector distribution function into independent blocks. The method, based on a general estimator of the distribution function, can be applied for discrete or continuous random vectors, and for i.i.d. data or dependent time series. We prove the consistency of the approach under general conditions on the estimator of the distribution function and we show that the consistency holds for i.i.d. data and discrete time series with mixing conditions. We also propose an efficient algorithm to approximate the estimator and show the performance of the method on simulated data. We apply the method in a real dataset to estimate the distribution of the flow over several locations on a river, observed at different time points. (AU)

Processo FAPESP: 19/17734-3 - Seleção de modelos em alta dimensão: propriedades teóricas e aplicações
Beneficiário:Florencia Graciela Leonardi
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Regular
Processo FAPESP: 13/07699-0 - Centro de Pesquisa, Inovação e Difusão em Neuromatemática - NeuroMat
Beneficiário:Oswaldo Baffa Filho
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs