Líquidos Iônicos Como Extratores Verdes para Obtenção de Carotenoides da Casca de ...
Conjuntos Invariantes em Sistemas Dinâmicos Diferenciais: Órbitas Periódicas, Toro...
Texto completo | |
Autor(es): |
Marcos, E.
;
Volkov, Y.
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Algebra; v. 566, p. 24-pg., 2021-01-15. |
Resumo | |
To study s-homogeneous algebras, we introduce the category of quivers with s-homogeneous corelations and the category of s-homogeneous triples. We show that both of these categories are equivalent to the category of s-homogeneous algebras. We prove some properties of the elements of s-homogeneous triples and give some consequences for s-Koszul algebras. Then we discuss the relations between the s-Koszulity and the Hilbert series of s-homogeneous triples. We give some application of the obtained results to s-homogeneous algebras with simple zero component. We describe all s-Koszul algebras with one relation recovering the result of Berger and all s-Koszul algebras with one dimensional s-th component. We show that if the s-th Veronese ring of an s-homogeneous algebra has two generators, then it has at least two relations. Finally, we classify all s-homogeneous algebras with s-th Veronese rings k < x, y >/(xy, yx) and k < x, y >/(x(2), y(2)). In particular, we show that all of these algebras are not s-Koszul while their s-homogeneous duals are s-Koszul. (C) 2020 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 14/09310-5 - Estruturas algébricas e suas representações |
Beneficiário: | Vyacheslav Futorny |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |