Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A sequential quadratic programming algorithm that combines merit function and filter ideas

Texto completo
Autor(es):
Francisco A.M. Gomes [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Universidade Estadual de Campinas. IMECC. Department of Applied Mathematics - Brasil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: COMPUTATIONAL & APPLIED MATHEMATICS; v. 26, n. 3, p. 337-379, 2007-00-00.
Resumo

A sequential quadratic programming algorithm for solving nonlinear programming problems is presented. The new feature of the algorithm is related to the definition of the merit function. Instead of using one penalty parameter per iteration and increasing it as the algorithm progresses, we suggest that a new point is to be accepted if it stays sufficiently below the piecewise linear function defined by some previous iterates on the (f,||C||2²)-space. Therefore, the penalty parameter is allowed to decrease between successive iterations. Besides, one need not to decide how to update the penalty parameter. This approach resembles the filter method introduced by Fletcher and Leyffer [Math. Program., 91 (2001), pp. 239-269], but it is less tolerant since a merit function is still used. Numerical comparison with standard methods shows that this strategy is promising. (AU)

Processo FAPESP: 04/05891-1 - Dois algoritimos para programacao nao linear de grande porte.
Beneficiário:Francisco de Assis Magalhães Gomes Neto
Modalidade de apoio: Auxílio à Pesquisa - Regular