| Texto completo | |
| Autor(es): |
Fischert, Andreas
;
Haeser, Gabriel
;
Silveira, Thiago P.
Número total de Autores: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Pacific Journal of Optimization; v. 20, n. 4, p. 15-pg., 2024-01-01. |
| Resumo | |
Second-order necessary or sufficient optimality conditions for nonlinear programming are usually defined by means of the positive (semi-)definiteness of a quadratic form, or a maximum of quadratic forms, over the critical cone. However, algorithms for finding such second-order stationary points are currently unknown. Typically, an algorithm with a second-order property approximates a primal-dual point such that the Hessian of the Lagrangian evaluated at the limit point is, under a constraint qualification, positive semidefinite over the lineality space of the critical cone. This is in general a proper subset of the critical cone, unless one assumes strict complementarity, which gives a weaker necessary optimality condition. In this paper, a new strong sequential optimality condition is suggested and analyzed. Based on this, we propose a penalty algorithm which, under certain conditions, is able to achieve second-order stationarity with positive semidefiniteness over the whole critical cone, which corresponds to a strong necessary optimality condition. Although the algorithm we propose is somewhat of a theoretical nature, our analysis provides a general framework for obtaining strong second-order stationarity. (AU) | |
| Processo FAPESP: | 20/00130-5 - Condições de otimalidade de segunda ordem para programação não linear |
| Beneficiário: | Thiago Parente da Silveira |
| Modalidade de apoio: | Bolsas no Exterior - Estágio de Pesquisa - Doutorado |
| Processo FAPESP: | 17/12187-9 - Algoritmos de segunda-ordem em otimização não linear com propriedades fortes de otimalidade |
| Beneficiário: | Thiago Parente da Silveira |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |
| Processo FAPESP: | 18/24293-0 - Métodos computacionais de otimização |
| Beneficiário: | Sandra Augusta Santos |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |