Busca avançada
Ano de início
Entree


Causal Relationships in Longitudinal Observational Data: An Integrative Modeling Approach

Texto completo
Autor(es):
Biazoli Jr, Claudinei E. ; Sato, Joao R. ; Pluess, Michael
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: PSYCHOLOGICAL METHODS; v. N/A, p. 17-pg., 2024-04-22.
Resumo

Much research in psychology relies on data from observational studies that traditionally do not allow for causal interpretation. However, a range of approaches in statistics and computational sciences have been developed to infer causality from correlational data. Based on conceptual and theoretical considerations on the integration of interventional and time-restrainment notions of causality, we set out to design and empirically test a new approach to identify potential causal factors in longitudinal correlational data. A principled and representative set of simulations and an illustrative application to identify early-life determinants of cognitive development in a large cohort study are presented. The simulation results illustrate the potential but also the limitations for discovering causal factors in observational data. In the illustrative application, plausible candidates for early-life determinants of cognitive abilities in 5-year-old children were identified. Based on these results, we discuss the possibilities of using exploratory causal discovery in psychological research but also highlight its limits and potential misuses and misinterpretations. (AU)

Processo FAPESP: 23/02538-0 - Séries temporais, ondaletas, dados de alta dimensão e aplicações
Beneficiário:Aluísio de Souza Pinheiro
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/21934-5 - Estatística de redes: teoria, métodos e aplicações
Beneficiário:André Fujita
Modalidade de apoio: Auxílio à Pesquisa - Temático