| Texto completo | |
| Autor(es): |
Ali, Alonso
;
Lee, Orlando
Número total de Autores: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023; v. 224, p. 8-pg., 2023-01-01. |
| Resumo | |
Let G be a graph and let r be a fixed vertex of G. Two spanning trees T-1 and T-2 of G rooted at r are edge-independent if for every vertex v is an element of V(G), the paths from v to r in T-1 and from v to r in T-2 are edge-disjoint. Itai and Zehavi conjectured that for every k-edge-connected graph and any vertex r is an element of V(G) there are k edge-independent spanning trees rooted at r (Edge-Independent Spanning Trees Conjecture). Itai and Rodeh proved the case k =2, Schlipf and Schmidt proved the case k = 3, and Hoyer and Thomas proved the case k = 4 of the conjecture. In this paper, we prove the case k = 5. (C) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) (AU) | |
| Processo FAPESP: | 15/11937-9 - Investigação de problemas difíceis do ponto de vista algorítmico e estrutural |
| Beneficiário: | Flávio Keidi Miyazawa |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 20/11118-6 - Conexidade em grafos |
| Beneficiário: | Alonso Ali Gonçalves |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |