Busca avançada
Ano de início
Entree


Temporal characterization of pre-midnight fading events over low latitudes

Texto completo
Autor(es):
Sousasantos, J. ; Moraes, A. O. ; Di Santis, V. ; Vani, B. C.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: Advances in Space Research; v. 73, n. 1, p. 13-pg., 2023-12-20.
Resumo

Several works investigated aspects of amplitude scintillation over low-latitude regions. Some of these studies also addressed characteristics and consequences of fading events in receivers and systems relying on information from satellites. It is now known that amplitude scintillation severity in transionospheric signals is stronger around the region of the Equatorial Ionization Anomaly and depends on the signal propagation path. However, a temporal characterization of the occurrence of amplitude scintillation and fading events over distinct latitudes is still needed. In this work this temporal analysis was done by using data from 4 ground-based scintillation monitor stations with distinct dip latitudes over the southern hemisphere (Brazilian region). The period of observation covers 5 months during the peak of the last solar cycle, and the hours considered are from 19:00 LT up to 23:30 LT for every station. The analyses revealed that the occurrence of scintillation for all the stations peaks at 21:00 LT, with weaker/stronger scintillation levels for stations closer to the dip equator/Equatorial Ionization Anomaly, respectively. More importantly, the results demonstrated that deep fading events are concentrated in the early hours of the night for all levels of scintillation. The probabilities of deep fading events peaks at 21:00 LT, decaying considerably for later hours. The results also revealed that the deepest fading experienced occurs in the earlier hours and that the depth of the fading decreases as later hours are considered. The probabilities of a given depth for the deepest fading also decay after peaking at 21:00 LT. All these findings provide a temporal characterization that can be insightful to users of information from satellites whose links are susceptible to problems such as cycle slips and loss-of-lock, especially in the earlier hours of the night. (c) 2023 COSPAR. Published by Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 17/50115-0 - INCT 2014: tecnologia GNSS no suporte à navegação aérea
Beneficiário:Joao Francisco Galera Monico
Modalidade de apoio: Auxílio à Pesquisa - Pesquisa em Políticas Públicas
Processo FAPESP: 18/06158-9 - Estudos estatísticos da variação dos parâmetros ionosféricos e sua relação com eventos do clima espacial
Beneficiário:Jonas de Sousa dos Santos
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado