Busca avançada
Ano de início
Entree


Light-ray wave functions and integrability

Texto completo
Autor(es):
Homrich, Alexandre ; Simmons-Duffin, David ; Vieira, Pedro
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Journal of High Energy Physics; v. N/A, n. 10, p. 48-pg., 2024-10-17.
Resumo

Using integrability, we construct (to leading order in perturbation theory) the explicit form of twist-three light-ray operators in planar N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM. This construction allows us to directly compute analytically continued CFT data at complex spin. We derive analytically the "magic" decoupling zeroes previously observed numerically. Using the Baxter equation, we also show that certain Regge trajectories merge together into a single unifying Riemann surface. Perhaps more surprisingly, we find that this unification of Regge trajectories is not unique. If we organize twist-three operators differently into what we call "cousin trajectories" we find infinitely more possible continuations. We speculate about which of these remarkable features of twist-three operators might generalize to other operators, other regimes and other theories. (AU)

Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais