Busca avançada
Ano de início
Entree


ON ALMOST POLYNOMIAL GROWTH OF PROPER CENTRAL POLYNOMIALS

Texto completo
Autor(es):
Giambruno, Antonio ; La Mattina, Daniela ; Milies, Cesar Polcino
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Proceedings of the American Mathematical Society; v. N/A, p. 16-pg., 2024-09-17.
Resumo

To any associative algebra A is associated a numerical sequence c(n)(delta)(A), n >= 1, called the sequence of proper central codimensions of A. It gives information on the growth of the proper central polynomials of the algebra. If A is a PI-algebra over a field of characteristic zero it has been recently shown that such a sequence either grows exponentially or is polynomially bounded. Here we classify, up to PI-equivalence, the algebras A for which the sequence c(n)(delta)(A), n >= 1, has almost polynomial growth. Then we face a similar problem in the setting of group-graded algebras and we obtain a classification also in this case when the corresponding sequence of proper central codimensions has almost polynomial growth. (AU)

Processo FAPESP: 20/16594-0 - Anéis não comutativos e aplicações
Beneficiário:Francisco Cesar Polcino Milies
Modalidade de apoio: Auxílio à Pesquisa - Temático