Teoria de valorização de anéis de grupos e homologia de grupos solúveis
Texto completo | |
Autor(es): |
Giambruno, Antonio
;
La Mattina, Daniela
;
Milies, Cesar Polcino
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Proceedings of the American Mathematical Society; v. N/A, p. 16-pg., 2024-09-17. |
Resumo | |
To any associative algebra A is associated a numerical sequence c(n)(delta)(A), n >= 1, called the sequence of proper central codimensions of A. It gives information on the growth of the proper central polynomials of the algebra. If A is a PI-algebra over a field of characteristic zero it has been recently shown that such a sequence either grows exponentially or is polynomially bounded. Here we classify, up to PI-equivalence, the algebras A for which the sequence c(n)(delta)(A), n >= 1, has almost polynomial growth. Then we face a similar problem in the setting of group-graded algebras and we obtain a classification also in this case when the corresponding sequence of proper central codimensions has almost polynomial growth. (AU) | |
Processo FAPESP: | 20/16594-0 - Anéis não comutativos e aplicações |
Beneficiário: | Francisco Cesar Polcino Milies |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |