Busca avançada
Ano de início
Entree


Texto completo
Autor(es):
Fontes, Luiz Renato ; Machado, Mariela Penton ; Zuaznabar, Leonel
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: ELECTRONIC JOURNAL OF PROBABILITY; v. 29, p. 28-pg., 2024-01-01.
Resumo

We consider the equilibrium surface of the Random Average Process started from an inclined plane, as seen from the height of the origin, obtained in [8], where its fluctuations were shown to be of order of the square root of the distance to the origin in one dimension, and the square root of the log of that distance in two dimensions (and constant in higher dimensions). Remarkably, even if not pointed out explicitly in [8], the covariance structure of those fluctuations is given in terms of the Green's function of a certain random walk, and thus corresponds to those of Discrete Gaussian Free Fields. In the present paper we obtain the scaling limit of those fluctuations in one and two dimensions, in terms of Gaussian processes, in the sense of finite dimensional distributions. In one dimension, the limit is given by Brownian Motion; in two dimensions, we get a process with a discontinuous covariance function. (AU)

Processo FAPESP: 17/10555-0 - Modelagem estocástica de sistemas interagentes
Beneficiário:Fabio Prates Machado
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/02662-4 - Estudo do comportamento a longo prazo de três processos estocásticos: um sistema de partículas com interações mecânicas, o REM sob dinâmica de metrópolis e o processo de contato com dois tipos de partículas
Beneficiário:Mariela Pentón Machado
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado