Busca avançada
Ano de início
Entree


Forecasting infectious diseases in Brazilian cities: Integrating socio-economic and geographic data from related cities through a machine learning approach

Texto completo
Autor(es):
Lober, Luiza ; Roster, Kirstin O. ; Rodrigues, Francisco A.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: CHAOS SOLITONS & FRACTALS; v. 187, p. 6-pg., 2024-08-30.
Resumo

Supervised machine learning models and public surveillance data have been employed for infectious disease forecasting in many settings. These models leverage various data sources capturing drivers of disease spread, such as climate conditions or human behavior. However, few models have incorporated the organizational structure of different geographic locations for forecasting. Traveling waves of seasonal outbreaks have been reported for dengue, influenza, and other infectious diseases, and many of the drivers of infectious disease dynamics may be shared across different cities, either due to their geographic or socioeconomic proximity. In this study, we developed a machine learning model to predict case counts of four infectious diseases across Brazilian cities one week ahead by incorporating information from related cities. We compared selecting related cities using both geographic distance and GDP per capita. Incorporating information from geographically proximate cities improved predictive performance for two of the four diseases, specifically COVID-19 and Zika. We also discuss the impact on forecasts in the presence of anomalous contagion patterns and the limitations of the proposed methodology. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 22/16065-3 - Dinâmica de sistemas não lineares através de aprendizado de máquina
Beneficiário:Luiza Lober de Souza Piva
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 20/09835-1 - IARA - Inteligência Artificial Recriando Ambientes
Beneficiário:André Carlos Ponce de Leon Ferreira de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia