Busca avançada
Ano de início
Entree


Dynamical-statistical downscaling of seasonal hindcasts of temperature and precipitation over South America

Texto completo
Autor(es):
Tavares, Priscila da Silva ; Rodrigues, Daniela Carneiro ; Chou, Sin Chan ; Laureanti, Nicole Cristine ; Medeiros, Gustavo Sueiro ; Gomes, Jorge Luis ; Vergasta, Leonardo Alves ; Correia, Francis Wagner Silva
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: RBRH-REVISTA BRASILEIRA DE RECURSOS HIDRICOS; v. 30, p. 18-pg., 2025-01-01.
Resumo

This study aimed to evaluate the performance of the Eta Regional Climate Model in reproducing the seasonal climate over South America for the rainy season from November until April, with emphasis on the Madeira, S & atilde;o Francisco, and Paran & aacute; river basins. For this purpose, a 10-year set of 6-month range seasonal hindcasts was produced using the Eta Regional Climate Model at 20-km horizontal resolution driven by the CFSv2 forecasts. In addition to dynamical downscaling, the precipitation and 2-meter temperature were statistically downscaled by applying a Quantile Mapping bias correction. The Eta model forecasts reasonably reproduced the precipitation and temperature patterns in the region, with some errors that were reduced by the statistical downscaling. Precipitation skill scores are higher in the northern and central areas of the continent. Although it has shown mixed performance for extreme events-low in the Paran & aacute; basin and limited but useful in the Madeira and S & atilde;o Francisco basins-the dynamical-statistical system developed with the Eta model shows higher skill and added value over the driver model, indicating potential to support water resources management in South America. (AU)

Processo FAPESP: 20/08796-2 - Sistema de previsão de secas e enchentes em apoio à gestão da reserva de desenvolvimento sustentável do rio Madeira
Beneficiário:Chou Sin Chan
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 24/05084-2 - Modelagem das mudanças climáticas em alta resolução
Beneficiário:Priscila da Silva Tavares
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado