Busca avançada
Ano de início
Entree


Vision through distortions: Atmospheric Turbulence- and Clothing-invariant long-range recognition

Texto completo
Autor(es):
Bertocco, Gabriel ; Andalo, Fernanda ; Boult, Terrance ; Rocha, Anderson
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2024 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY, WIFS 2024; v. N/A, p. 6-pg., 2024-01-01.
Resumo

Long-range recognition is paramount in security-sensitive settings. It faces the hard task of retrieving images from a high-resolution gallery given a probe image affected by distortions due to atmospheric turbulence and different features, such as clothing. This work proposes a novel atmospheric turbulence- and clothing-invariant whole-body model to address the long-range recognition task. It leverages self-defined proxies across different acquisition ranges, a novel way to create diverse batches based on capturing condition and clothing, and a condition- and clothing-aware loss function. As most whole-body benchmarks have limited ranges, we employ the BRIAR dataset for training and evaluation. It comprises identities captured within 100 to 1,000 meters from the camera in various poses, lighting conditions, and clothing variations. Quantitative and qualitative analysis show our model leads to distortion-invariant discriminative features across different recording capturing ranges. It also obtains competitive performance compared to the state-of-the-art benchmarks Market1501, MSMT17, and DeepChange. (AU)

Processo FAPESP: 22/02299-2 - Aprendizado auto-supervisionado para biometria e outras aplicações
Beneficiário:Gabriel Capiteli Bertocco
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado Direto
Processo FAPESP: 19/15825-1 - Mineração de pessoas, objetos e lugares de interesse em fontes heterogêneas de dados
Beneficiário:Gabriel Capiteli Bertocco
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 23/12865-8 - Horus: técnicas de inteligência artificial para detecção e análise de realidades sintéticas
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático