| Texto completo | |
| Autor(es): |
Mihara, Antonio
;
Kuwana, Celia M.
;
Budzinski, Roberto C.
;
Muller, Lyle E.
;
Medrano-T, Rene O.
Número total de Autores: 5
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Chaos; v. 35, n. 3, p. 12-pg., 2025-03-01. |
| Resumo | |
We study a network of identical Kuramoto oscillators with higher-order interactions that also break the rotational symmetry of the system. To gain analytical insights into this model, we use the Watanabe-Strogatz Ansatz, which allows us to reduce the dimensionality of the original system of equations. The study of stability and bifurcations of the reduced system reveals a codimension two Bogdanov-Takens bifurcation and several other associated bifurcations. Such analysis is corroborated by numerical simulations of the associated Kuramoto system, which, in turn, unveils a variety of collective behaviors such as synchronized motion, oscillation death, chimeras, incoherent states, and traveling waves. Importantly, this system displays a case where alternating chimeras emerge in an indistinguishable single population of oscillators, which may offer insights into the unihemispheric slow-wave sleep phenomenon observed in mammals and birds. (AU) | |
| Processo FAPESP: | 24/06718-5 - Bacias de Atração: De mapas unidimensionais a redes complexas |
| Beneficiário: | Rene Orlando Medrano Torricos |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |
| Processo FAPESP: | 23/08144-3 - Aspectos da dinâmica de redes de osciladores |
| Beneficiário: | Antonio Mihara |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |