Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

LEAST ACTION PRINCIPLE AND THE INCOMPRESSIBLE EULER EQUATIONS WITH VARIABLE DENSITY

Texto completo
Autor(es):
Lopes Filho, Milton C. [1] ; Nussenzveig Lopes, Helena J. [1] ; Precioso, Juliana C. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas UNICAMP, Dept Matemat, IMECC, BR-13083859 Campinas, SP - Brazil
[2] Univ Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sj Do Rio Preto, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY; v. 363, n. 5, p. 2641-2661, MAY 2011.
Citações Web of Science: 1
Resumo

In this article we study a variational formulation, proposed by V. I. Arnold and by Y. Brenier, for the incompressible Euler equations with variable density. We consider the problem of minimizing an action functional, the integral in time of the kinetic energy, among fluid motions considered as trajectories in the group of volume-preserving diffeomorphisms beginning at the identity and ending at some fixed diffeomorphism at a given time. We show that a relaxed version of this variational problem always has a solution, and we derive an Euler-Lagrange system for the relaxed minimization problem which we call the relaxed Euler equations. Finally, we prove consistency between the relaxed Euler equations and the classical Euler system, showing that weak solutions of the relaxed Euler equations with the appropriate geometric structure give rise to classical Euler solutions and that classical solutions of the Euler system induce weak solutions of the relaxed Euler equations. The first consistency result is new even in the constant density case. The remainder of our analysis is an extension of the work of Y. Brenier (1999) to the variable density case. (AU)

Processo FAPESP: 07/51490-7 - Aspectos matemáticos da dinâmica dos fluidos incompressíveis
Beneficiário:Milton da Costa Lopes Filho
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 01/06984-5 - Soluções fracas das equações semigeostróficas de fluxos atmosféricos
Beneficiário:Juliana Conceição Precioso Pereira
Modalidade de apoio: Bolsas no Brasil - Doutorado