Busca avançada
Ano de início
Entree


Texto completo
Autor(es):
Andreani, Alexandre C. ; Boaretto, Bruno R. R. ; Macau, Elbert E. N.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS; v. N/A, p. 11-pg., 2025-09-15.
Resumo

This work proposes an innovative approach using machine learning to predict extreme events in time series of chaotic dynamical systems. The research focuses on the time series of the H & eacute;non map, a two-dimensional model known for its chaotic behavior. The method consists of identifying time windows that anticipate extreme events, using convolutional neural networks to classify the system states. By reconstructing attractors and classifying (normal and transitional) regimes, the model shows high accuracy in predicting normal regimes, although forecasting transitional regimes remains challenging, particularly for longer intervals and rarer events. The method presents a result above 80% of success for predicting the transition regime up to three steps before the occurrence of the extreme event. Despite limitations posed by the chaotic nature of the system, the approach opens avenues for further exploration of alternative neural network architectures and broader datasets to enhance forecasting capabilities. (AU)

Processo FAPESP: 21/09839-0 - O papel da corrente sináptica na sincronização de redes neuronais
Beneficiário:Bruno Rafael Reichert Boaretto
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 23/16273-8 - Investigando padrões emergentes de sincronização e processamento de informações de redes neurais usando análise de dados
Beneficiário:Bruno Rafael Reichert Boaretto
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado
Processo FAPESP: 24/05700-5 - Dinâmica não linear
Beneficiário:Iberê Luiz Caldas
Modalidade de apoio: Auxílio à Pesquisa - Temático