| Texto completo | |
| Autor(es): |
Nobrega, Andre
;
Theodoro, Ilan
;
Figueroa, Pascual
;
Falcao, Alexandre Xavier
Número total de Autores: 4
|
| Tipo de documento: | Artigo Científico |
| Fonte: | PATTERN RECOGNITION LETTERS; v. 198, p. 7-pg., 2025-12-01. |
| Resumo | |
Latent fingerprints are challenging to identify due to low quality, partial impressions, and noise. This paper proposes a self-supervised contrastive learning approach to generate minutiae embeddings, improving fingerprint representation and matching. We first introduce a method to synthesize realistic latent fingerprints from rolled and plain images by applying ridge distortions, contrast shifts, blurring, noise, and document-based backgrounds. The resulting dataset includes reliable minutiae correspondences for effective training. Fingerprints are then represented as orientation-aligned, minutia-centered patches. A Siamese network trained with contrastive learning on these patches produces discriminative embeddings. Matching computes the mean cosine similarity between the embeddings of paired minutiae from candidate references selected by a matcher. Experiments on NIST SD27 and SD302, using a 20,473-print gallery, demonstrate rank-1 identification gains of 4.25 and 1.66 percentage points over prior work. It also consistently outperforms other synthetic latent generation baselines. (AU) | |
| Processo FAPESP: | 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria |
| Beneficiário: | Francisco Louzada Neto |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs |
| Processo FAPESP: | 23/14427-8 - Ciência de Dados para a Indústria Inteligente (CDII) |
| Beneficiário: | José Alberto Cuminato |
| Modalidade de apoio: | Auxílio à Pesquisa - Programa Centros de Pesquisa Aplicada |