Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Approximating a class of combinatorial problems with rational objective function

Texto completo
Autor(es):
Correa, Jose R. [1] ; Fernandes, Cristina G. [2] ; Wakabayashi, Yoshiko [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Chile, Dept Ind Engn, Santiago, RM - Chile
[2] Univ Sao Paulo, Dept Comp Sci, Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: MATHEMATICAL PROGRAMMING; v. 124, n. 1-2, p. 255-269, JUL 2010.
Citações Web of Science: 5
Resumo

In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo's result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo's result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others. (AU)

Processo FAPESP: 03/09925-5 - Fundamentos da ciência da computação: algoritmos combinatórios e estruturas discretas
Beneficiário:Yoshiharu Kohayakawa
Modalidade de apoio: Auxílio à Pesquisa - Programa PRONEX - Temático