Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Entropy and Widths of Multiplier Operators on Two-Point Homogeneous Spaces

Texto completo
Autor(es):
Kushpel, A. [1] ; Tozoni, S. A. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics - England
[2] Univ Estadual Campinas, Inst Matemat, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: CONSTRUCTIVE APPROXIMATION; v. 35, n. 2, p. 137-180, APR 2012.
Citações Web of Science: 10
Resumo

In this article we continue the development of methods of estimating n-widths and entropy of multiplier operators begun in 1992 by A. Kushpel (Fourier Series and Their Applications, pp. 49-53, 1992; Ukr. Math. J. 45(1): 59-65, 1993). Our main aim is to give an unified treatment for a wide range of multiplier operators. on symmetric manifolds. Namely, we investigate entropy numbers and n-widths of decaying multiplier sequences of real numbers. Lambda = [lambda(k)](k=1)(infinity), |lambda(1)| >= |lambda(2)| >= ... , Lambda : L-p(M-d) -> L-q (M-d) on two-point homogeneous spaces M-d : S-d, P-d (R), P-d (C), Pd (H), P-16(Cay). In the first part of this article, general U(p)per and lower bounds are established for entropy and n-widths of multiplier operators. In the second part, different applications of these results are presented. In particular, we show that these estimates are order sharp in various important situations. For example, sharp order estimates are found for function sets with finite and infinite smoothness. We show that in the case of finite smoothness (i.e., |lambda(k)| (infinity)(k=1)|lambda(1)| >= |lambda(2)| >= ... , Lambda, k -> infinity), we have e(n)(Lambda U-p(S-d), L-q (S-d)) << d(n)(U-p(S-d), L-q (S-d)), n -> infinity, but in the case of infinite smoothness (i.e., |lambda k| (sic) e(-gamma kr), gamma > 0, 0 < r = 1, k.8), we have e(n)(Lambda U-p(S-d), Lq (Sd)) >> dn(dU(p)(S-d), Lq (Sd)), n -> 8 for different p and q, where U-p(S-d) denotes the closed unit ball of Lp(S-d). (AU)

Processo FAPESP: 07/56162-8 - Formula de quadratura otima na esfera.
Beneficiário:Alexander Kushpel
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 03/10393-8 - Alexander Konstantinovich Kushpel | Ryerson Polytechnic University - Canadá
Beneficiário:Sergio Antonio Tozoni
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional