Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS

Texto completo
Autor(es):
Santos-Lima, R. [1] ; de Gouveia Dal Pino, E. M. [1] ; Lazarian, A. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo - Brazil
[2] Univ Wisconsin, Dept Astron, Madison, WI 53706 - USA
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: ASTROPHYSICAL JOURNAL; v. 747, n. 1 MAR 1 2012.
Citações Web of Science: 74
Resumo

The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions similar to 100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star and planet formation. (AU)

Processo FAPESP: 06/50654-3 - Investigação de fenômenos de altas energias e plasmas astrofísicos: teoria, observação e simulações numéricas
Beneficiário:Elisabete Maria de Gouveia Dal Pino
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 07/04551-0 - Turbulência no meio intergaláctico e a origem e evolução dos campos magnéticos cósmicos
Beneficiário:Reinaldo Santos de Lima
Linha de fomento: Bolsas no Brasil - Doutorado Direto