Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The Kosko Subsethood Fuzzy Associative Memory (KS-FAM): Mathematical Background and Applications in Computer Vision

Texto completo
Autor(es):
Sussner, Peter [1] ; Esmi, Estevao L. [1] ; Villaverde, Ivan [2] ; Grana, Manuel [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Appl Math, BR-13083859 Campinas, SP - Brazil
[2] Univ Basque Country, Computat Intelligence Grp, Dept CCIA, San Sebastian 20018, Pais Vasco - Spain
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Mathematical Imaging and Vision; v. 42, n. 2-3, p. 134-149, FEB 2012.
Citações Web of Science: 18
Resumo

Many well-known fuzzy associative memory (FAM) models can be viewed as (fuzzy) morphological neural networks (MNNs) because they perform an operation of (fuzzy) mathematical morphology at every node, possibly followed by the application of an activation function. The vast majority of these FAMs represent distributive models given by single-layer matrix memories. Although the Kosko subsethood FAM (KS-FAM) can also be classified as a fuzzy morphological associative memory (FMAM), the KS-FAM constitutes a two-layer non-distributive model. In this paper, we prove several theorems concerning the conditions of perfect recall, the absolute storage capacity, and the output patterns produced by the KS-FAM. In addition, we propose a normalization strategy for the training and recall phases of the KS-FAM. We employ this strategy to compare the error correction capabilities of the KS-FAM and other fuzzy and gray-scale associative memories in terms of some experimental results concerning gray-scale image reconstruction. Finally, we apply the KS-FAM to the task of vision-based self-localization in robotics. (AU)

Processo FAPESP: 09/16284-2 - Estimação de Mapeamentos entre Reticulados Utilizando Neurocomputação (Fuzzy) para Reconhecimento de Padrões
Beneficiário:Estevão Esmi Laureano
Modalidade de apoio: Bolsas no Brasil - Doutorado