Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A robust multi-scale integration method to obtain the depth from gradient maps

Texto completo
Autor(es):
Saracchini, Rafael F. V. [1] ; Stolfi, Jorge [1] ; Leitao, Helena C. G. [2] ; Atkinson, Gary A. [3] ; Smith, Melvyn L. [3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP - Brazil
[2] Univ Fed Fluminense, Inst Comp, BR-24220000 Niteroi, RJ - Brazil
[3] Univ W England, Machine Vis Lab, Bristol BS16 1QY, Avon - England
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: COMPUTER VISION AND IMAGE UNDERSTANDING; v. 116, n. 8, p. 882-895, AUG 2012.
Citações Web of Science: 10
Resumo

We describe a robust method for the recovery of the depth map (or height map) from a gradient map (or normal map) of a scene, such as would be obtained by photometric stereo or interferometry. Our method allows for uncertain or missing samples, which are often present in experimentally measured gradient maps, and also for sharp discontinuities in the scene's depth, e.g. along object silhouette edges. By using a multi-scale approach, our integration algorithm achieves linear time and memory costs. A key feature of our method is the allowance for a given weight map that flags unreliable or missing gradient samples. We also describe several integration methods from the literature that are commonly used for this task. Based on theoretical analysis and tests with various synthetic and measured gradient maps, we argue that our algorithm is as accurate as the best existing methods, handling incomplete data and discontinuities, and is more efficient in time and memory usage, especially for large gradient maps. (C) 2012 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 07/52015-0 - Métodos de aproximação para computação visual
Beneficiário:Jorge Stolfi
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 07/59509-9 - Métodos geométricos e fotométricos para visão computacional 3D
Beneficiário:Rafael Felipe Veiga Saracchini
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto