Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Quaid I Azam Univ, Dept Math, Islamabad - Pakistan
[2] Sao Paulo State Univ, Dept Math, Sao Jose Do Rio Preto, SP - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | JOURNAL OF ALGEBRA AND ITS APPLICATIONS; v. 11, n. 4 AUG 2012. |
Citações Web of Science: | 4 |
Resumo | |
It is very well known that algebraic structures have valuable applications in the theory of error-correcting codes. Blake {[}Codes over certain rings, Inform. and Control 20 (1972) 396-404] has constructed cyclic codes over Z(m) and in {[}Codes over integer residue rings, Inform. and Control 29 (1975), 295-300] derived parity check-matrices for these codes. In {[}Linear codes over finite rings, Tend. Math. Appl. Comput. 6(2) (2005) 207-217]. Andrade and Palazzo present a construction technique of cyclic, BCH, alternant, Goppa and Srivastava codes over a local finite ring B. However, in {[}Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and {[}Constructions of codes through semigroup ring B{[}X; 1/2(2) Z(0)] and encoding, Comput. Math. Appl. 62 (2011) 1645-1654], Shah et al. extend this technique of constructing linear codes over a finite local ring B via monoid rings B{[}X; 1/p(k) Z(0)], where p = 2 and k = 1, 2, respectively, instead of the polynomial ring B{[}X]. In this paper, we construct these codes through the monoid ring B{[}X; 1/kp Z(0)], where p = 2 and k = 1, 2, 3. Moreover, we also strengthen and generalize the results of {[}Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and {[}Constructions of codes through semigroup ring B{[}X; 1/2(2) Z(0)]] and {[}Encoding, Comput. Math. Appl. 62 (2011) 1645-1654] to the case of k = 3. (AU) | |
Processo FAPESP: | 07/56052-8 - Teoria da informação e códigos |
Beneficiário: | Sueli Irene Rodrigues Costa |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |