| Texto completo | |
| Autor(es): Mostrar menos - |
Rodrigues, Jorge L. M.
[1]
;
Pellizari, Vivian H.
[2]
;
Mueller, Rebecca
[3]
;
Baek, Kyunghwa
[4]
;
Jesus, Ederson da C.
[5]
;
Paula, Fabiana S.
[2]
;
Mirza, Babur
[1]
;
Hamaoui, Jr., George S.
[4]
;
Tsai, Siu Mui
[6]
;
Feigl, Brigitte
[7]
;
Tiedje, James M.
[8]
;
Bohannan, Brendan J. M.
[3]
;
Nuesslein, Klaus
[4]
Número total de Autores: 13
|
| Afiliação do(s) autor(es): | [1] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 - USA
[2] Univ Sao Paulo, Inst Oceanog, BR-05508120 Sao Paulo - Brazil
[3] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 - USA
[4] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 - USA
[5] BR-23890000 Seropedica, RJ - Brazil
[6] Siu Mui Tsai, Embrapa Agrobiol, BR-23890000 Seropedica, RJ - Brazil
[7] Ctr Energia Nucl Agr, BR-13400970 Piracicaba, SP - Brazil
[8] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 - USA
Número total de Afiliações: 8
|
| Tipo de documento: | Artigo Científico |
| Fonte: | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA; v. 110, n. 3, p. 988-993, JAN 15 2013. |
| Citações Web of Science: | 164 |
| Resumo | |
The Amazon rainforest is the Earth's largest reservoir of plant and animal diversity, and it has been subjected to especially high rates of land use change, primarily to cattle pasture. This conversion has had a strongly negative effect on biological diversity, reducing the number of plant and animal species and homogenizing communities. We report here that microbial biodiversity also responds strongly to conversion of the Amazon rainforest, but in a manner different from plants and animals. Local taxonomic and phylogenetic diversity of soil bacteria increases after conversion, but communities become more similar across space. This homogenization is driven by the loss of forest soil bacteria with restricted ranges (endemics) and results in a net loss of diversity. This study shows homogenization of microbial communities in response to human activities. Given that soil microbes represent the majority of biodiversity in terrestrial ecosystems and are intimately involved in ecosystem functions, we argue that microbial biodiversity loss should be taken into account when assessing the impact of land use change in tropical forests. (AU) | |
| Processo FAPESP: | 08/58114-3 - Monitoring the microbial diversity and functional activities in response to land-use changes and deforestation under soybean and sugarcane cultivations |
| Beneficiário: | Tsai Siu Mui |
| Modalidade de apoio: | Auxílio à Pesquisa - Programa de Pesquisa sobre Mudanças Climáticas Globais - Temático |