Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Discriminating Different Classes of Biological Networks by Analyzing the Graphs Spectra Distribution

Texto completo
Autor(es):
Takahashi, Daniel Yasumasa [1, 2] ; Sato, Joao Ricardo [3] ; Ferreira, Carlos Eduardo [4] ; Fujita, Andre [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Princeton Univ, Dept Psychol, Princeton, NJ 08544 - USA
[2] Princeton Univ, Inst Neurosci, Princeton, NJ 08544 - USA
[3] Fed Univ ABC, Ctr Math Computat & Cognit, Sao Paulo - Brazil
[4] Univ Sao Paulo, Dept Comp Sci, Inst Math & Stat, Santo Andre, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: PLoS One; v. 7, n. 12 DEC 19 2012.
Citações Web of Science: 16
Resumo

The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e. g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a ``fingerprint{''}. Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the ``uncertainty{''} of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed. (AU)

Processo FAPESP: 11/07762-8 - Causalidade de Granger entre grupos de séries temporais: desenvolvimento de metodologias para seleção de modelos e extensões no domínio da frequência com aplicações em biologia molecular e neurociência
Beneficiário:André Fujita
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 10/01394-4 - Métodos estatísticos e computacionais para a discriminação de alterações anatômicas, estados mentais e identificação da conectividade cerebral: uma abordagem integrativa utilizando ressonância magnética estrutural, funcional e EEG
Beneficiário:João Ricardo Sato
Modalidade de apoio: Auxílio à Pesquisa - Regular