Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Automatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signals

Texto completo
Autor(es):
Nunes, Thiago M. [1] ; de Albuquerque, Victor Hugo C. [2] ; Papa, Joao P. [3] ; Silva, Cleiton C. [4] ; Normando, Paulo G. [1] ; Moura, Elineudo P. [4] ; Tavares, Joao Manuel R. S. [5]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Fed Ceara, Dept Engn Teleinformat, Fortaleza, Ceara - Brazil
[2] Univ Fortaleza, Programa Posgrad Informat Aplicada, Fortaleza, Ceara - Brazil
[3] Univ Estadual Paulista, Dept Ciencia Comp, Bauru, SP - Brazil
[4] Univ Fortaleza, Dept Engn Met & Mat, Fortaleza, Ceara - Brazil
[5] Univ Porto, Fac Engn, Dept Engn Mecan, Inst Engn Mecan & Gestao Ind, P-4100 Oporto - Portugal
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 40, n. 8, p. 3096-3105, JUN 15 2013.
Citações Web of Science: 23
Resumo

Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the gamma `' and delta phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and bacicscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 degrees C for 10,100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e., detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. (C) 2012 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 09/16206-1 - Novas tendências em reconhecimento de padrões baseado em floresta de caminhos ótimos
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores