Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bayesian modeling of autoregressive partial linear models with scale mixture of normal errors

Texto completo
Autor(es):
Ferreira, Guillermo [1] ; Castro, Luis M. [1] ; Lachos, Victor H. [2] ; Dias, Ronaldo [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Concepcion, Dept Stat, Concepcion - Chile
[2] Univ Estadual Campinas, IMECC, Dept Stat, Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Applied Statistics; v. 40, n. 8, p. 1796-1816, AUG 1 2013.
Citações Web of Science: 2
Resumo

Normality and independence of error terms are typical assumptions for partial linear models. However, these assumptions may be unrealistic in many fields, such as economics, finance and biostatistics. In this paper, a Bayesian analysis for partial linear model with first-order autoregressive errors belonging to the class of the scale mixtures of normal distributions is studied in detail. The proposed model provides a useful generalization of the symmetrical linear regression model with independent errors, since the distribution of the error term covers both correlated and thick-tailed distributions, and has a convenient hierarchical representation allowing easy implementation of a Markov chain Monte Carlo scheme. In order to examine the robustness of the model against outlying and influential observations, a Bayesian case deletion influence diagnostics based on the Kullback-Leibler (K-L) divergence is presented. The proposed method is applied to monthly and daily returns of two Chilean companies. (AU)

Processo FAPESP: 11/17400-6 - Aplicações das distribuições de misturas da escala Skew-Normal em modelos de efeitos mistos
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Regular