Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Assessing the Need for Referral in Automatic Diabetic Retinopathy Detection

Texto completo
Autor(es):
Pires, Ramon [1] ; Jelinek, Herbert F. [2, 3] ; Wainer, Jacques [1] ; Goldenstein, Siome [1] ; Valle, Eduardo [4] ; Rocha, Anderson [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP - Brazil
[2] Khalifa Univ, Dept Biomed Engn, Abu Dhabi 127788 - U Arab Emirates
[3] Macquarie Univ, Australian Sch Adv Med, N Ryde, NSW 2113 - Australia
[4] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Biomedical Engineering; v. 60, n. 12, p. 3391-3398, DEC 2013.
Citações Web of Science: 22
Resumo

Emerging technologies in health care aim at reducing unnecessary visits to medical specialists, minimizing overall cost of treatment and optimizing the number of patients seen by each doctor. This paper explores image recognition for the screening of diabetic retinopathy, a complication of diabetes that can lead to blindness if not discovered in its initial stages. Many previous reports on DR imaging focus on the segmentation of the retinal image, on quality assessment, and on the analysis of presence of DR-related lesions. Although this study has advanced the detection of individual DR lesions from retinal images, the simple presence of any lesion is not enough to decide on the need for referral of a patient. Deciding if a patient should be referred to a doctor is an essential requirement for the deployment of an automated screening tool for rural and remote communities. We introduce an algorithm to make that decision based on the fusion of results by metaclassification. The input of the metaclassifier is the output of several lesion detectors, creating a powerful high-level feature representation for the retinal images. We explore alternatives for the bag-of-visual-words (BoVW)-based lesion detectors, which critically depends on the choices of coding and pooling the low-level local descriptors. The final classification approach achieved an area under the curve of 93.4% using SOFT-MAX BoVW (soft-assignment coding/max pooling), without the need of normalizing the high-level feature vector of scores. (AU)

Processo FAPESP: 11/15349-3 - Técnicas de fusão de classificadores para um sistema automático de triagem de retinopatia diabética
Beneficiário:José Ramon Trindade Pires
Linha de fomento: Bolsas no Brasil - Mestrado
Processo FAPESP: 10/05647-4 - Computação forense e criminalística de documentos: coleta, organização, classificação e análise de evidências
Beneficiário:Anderson de Rezende Rocha
Linha de fomento: Auxílio à Pesquisa - Apoio a Jovens Pesquisadores