Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Adaptive edge-preserving image denoising using wavelet transforms

Texto completo
Autor(es):
da Silva, Ricardo Dutra [1] ; Minetto, Rodrigo [1] ; Schwartz, William Robson [1] ; Pedrini, Helio [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: PATTERN ANALYSIS AND APPLICATIONS; v. 16, n. 4, p. 567-580, NOV 2013.
Citações Web of Science: 21
Resumo

Image denoising is a relevant issue found in diverse image processing and computer vision problems. It is a challenge to preserve important features, such as edges, corners and other sharp structures, during the denoising process. Wavelet transforms have been widely used for image denoising since they provide a suitable basis for separating noisy signal from the image signal. This paper describes a novel image denoising method based on wavelet transforms to preserve edges. The decomposition is performed by dividing the image into a set of blocks and transforming the data into the wavelet domain. An adaptive thresholding scheme based on edge strength is used to effectively reduce noise while preserving important features of the original image. Experimental results, compared to other approaches, demonstrate that the proposed method is suitable for different classes of images contaminated by Gaussian noise. (AU)

Processo FAPESP: 10/10618-3 - Combinação de Descritores de Características para Análise de Vídeos Contendo Humanos
Beneficiário:William Robson Schwartz
Linha de fomento: Bolsas no Brasil - Pós-Doutorado