Vesselin Stoyanov Drensky | Institute of Mathematics Bulgarian Academy of Sciences...
Identidades da álgebra das matrizes sobre corpos de qualquer característica
Identidades polinomiais da álgebra de matrizes com estruturas adicionais
Texto completo | |
Autor(es): |
Hill, Jordan Dale
[1]
Número total de Autores: 1
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Math & Stat, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | COMMUNICATIONS IN ALGEBRA; v. 41, n. 7, p. 2698-2719, MAY 28 2013. |
Citações Web of Science: | 0 |
Resumo | |
Independently, Razmyslov and Procesi have shown that for a field F of characteristic 0 all trace PIs (and thus all PIs) for M-n(F) lie in the T-ideal generated by the characteristic polynomial. Procesi then proved that for (M-n, t), an algebra with (transpose) involution, all {*}-trace PIs lie in the {*}-T-ideal generated by a set of n+1 {*}-trace PIs. This result proved the existence of the n+1 {*}-trace PIs, but no explicit formulas. In this paper we further investigate these n+1 {*}-trace PIs by first constructing a closely related set of so-called pure-trace {*}-PIs and then giving examples and applications to illuminate our results. (AU) | |
Processo FAPESP: | 10/51879-4 - Polynomial - identities of matrizes |
Beneficiário: | Jordan Dale Hill |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |