Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Fed Paraiba, Dept Math, BR-58059900 Joao Pessoa, Paraiba - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | PACIFIC JOURNAL OF MATHEMATICS; v. 266, n. 2, p. 257-282, DEC 2013. |
Citações Web of Science: | 3 |
Resumo | |
We study the rate of convergence of global attractors and eigenvalues of the family of dissipative semilinear wave equations with variable coefficients u(tt) + Lambda(epsilon)u + Lambda(delta)(epsilon)u(t) = f(u), where Lambda(epsilon) is the elliptic operator -div(a(epsilon)(x)del) with epsilon is an element of {[}0, 1] and sufficiently smooth coefficients a(epsilon), and where delta is an element of (1/2, 1) and the nonlinearity f is a continuously differentiable function satisfying suitable growth conditions. We show that the rate of convergence, as epsilon -> 0(+), of the global attractors of these problems, as well as of their eigenvalues, is proportional to the distance of the coefficients parallel to a(epsilon) - a(0)parallel to(L infinity(Omega)). (AU) | |
Processo FAPESP: | 11/04166-5 - Continuidade de atratores para problemas parabólicos |
Beneficiário: | Marcelo José Dias Nascimento |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |