Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A peculiar stable region around Pluto

Texto completo
Autor(es):
Giuliatti Winter, S. M. [1] ; Winter, O. C. [1] ; Vieira Neto, E. [1] ; Sfair, R. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Paulista UNESP, Grp Dinam Orbital & Planetol, BR-12516410 Guaratingueta, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Monthly Notices of the Royal Astronomical Society; v. 439, n. 4, p. 3300-3307, APR 2014.
Citações Web of Science: 3
Resumo

Giuliatti Winter et al. found several stable regions for a sample of test particles located between the orbits of Pluto and Charon. One peculiar stable region in the space of the initial orbital elements is located at a = (0.5d, 0.7d) and e = (0.2, 0.9), where a and e are the initial semimajor axis and eccentricity of the particles, respectively, and d is the Pluto-Charon distance. This peculiar region (hereafter called the sailboat region) is associated with a family of periodic orbits derived from the planar, circular, restricted three-body problem (Pluto-Charon-particle). In this work, we study the origin of this stable region by analysing the evolution of such family of periodic orbits. We show that they are not in resonances with Charon. The period of the periodic orbit varies along the family, decreasing with the increase of the Jacobi constant. We also explore the extent of the sailboat region by adopting different initial values of the orbital inclination (I) and argument of the pericentre (omega) of the particles. The sailboat region is present for I = {[}0 degrees, 90 degrees] and for two intervals of omega, omega = {[}-10 degrees, 10 degrees] and (160 degrees, 200 degrees). A crude estimative of the size of the hypothetical bodies located at the sailboat region can be derived by computing the tidal damping in their eccentricities. If we neglect the orbital evolution of Pluto and Charon, the time-scale for circularization of their orbits is longer than the age of the Solar system for bodies smaller than 500 m in radius. (AU)

Processo FAPESP: 11/08171-3 - Dinâmica orbital de pequenos corpos
Beneficiário:Othon Cabo Winter
Modalidade de apoio: Auxílio à Pesquisa - Temático