Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

EXISTENCE, UNIQUENESS, AND ANALYTICITY OF SPACE-PERIODIC SOLUTIONS TO THE REGULARIZED LONG-WAVE EQUATION

Autor(es):
Chertovskih, R. [1, 2] ; Chian, A. C. -L. [3, 4, 5, 6] ; Podvigina, O. [1] ; Rempel, E. L. [4, 5, 6] ; Zheligovsky, V. [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Russian Acad Sci, Inst Earthquake Predict Theory & Math Geophys, Moscow 117997 - Russia
[2] Univ Porto, Fac Engn, Ctr Wind Energy & Atmospher Flows, P-4200465 Oporto - Portugal
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005 - Australia
[4] Inst Aeronaut Technol IEFM ITA, BR-12228900 Sao Paulo - Brazil
[5] WISER, BR-12228900 Sao Paulo - Brazil
[6] Natl Inst Space Res INPE, BR-12227010 Sao Paulo - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: Advances in Differential Equations; v. 19, n. 7-8, p. 725-754, JUL-AUG 2014.
Citações Web of Science: 1
Resumo

We consider space-periodic evolutionary and travelling-wave solutions to the regularized long-wave equation (RLWE) with damping and forcing. We establish existence, uniqueness and smoothness of the evolutionary solutions for smooth initial conditions, and global in time spatial analyticity of such solutions for analytical initial conditions. The width of the analyticity strip decays at most polynomially. We prove existence of travelling-wave solutions and uniqueness of travelling waves of a sufficiently small norm. The importance of damping is demonstrated by showing that the problem of finding travelling-wave solutions to die undamped RLWE is not well-posed. Finally, we demonstrate the asymptotic convergence of the power series expansion of travelling waves for a weak forcing. (AU)

Processo FAPESP: 13/22314-7 - Campos magnéticos e dínamos em plasmas espaciais e astrofísicos II
Beneficiário:Erico Luiz Rempel
Modalidade de apoio: Auxílio à Pesquisa - Regular