| Processo: | 08/54221-0 |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |
| Data de Início da vigência: | 01 de setembro de 2008 |
| Data de Término da vigência: | 31 de agosto de 2010 |
| Área do conhecimento: | Ciências Exatas e da Terra - Matemática - Análise |
| Pesquisador responsável: | Ana Paula Peron |
| Beneficiário: | Ana Paula Peron |
| Instituição Sede: | Instituto de Ciências Matemáticas e de Computação (ICMC). Universidade de São Paulo (USP). São Carlos , SP, Brasil |
| Município da Instituição Sede: | São Carlos |
| Assunto(s): | Operadores integrais Valores próprios |
| Palavra(s)-Chave do Pesquisador: | Arpoximacao De Identidade | Autovalores | Esferas | Harmonicos Externos | Nucleos Positivos Definidos | Operadores Integrais |
Resumo
O projeto é composto basicamente de duas partes distintas. Uma relaciona-se com aproximação em esferas. Recentemente. foram obtidos resultados sobre aproximação da identidade nos espaços C(X) e L^p(X,s) nos seguintes casos: Lasser e Obermaier [26,27] discutiram sobre expansões de Fourier com pesos em relação a sistemas de polinômios ortogonais, sendo X, subconjunto da reta, o suporte compacto de uma medida de probabilidade s. Enquanto que em [39], Menegatto e Piantella consideraram X sendo a esfera unitária S^m do espaço Euclideano (m+1)-dimensional R^(m+1). Eles obtiveram condições necessárias e suficientes para que uma seqüência de operadores dados por somas com pesos de harmônicos esféricos, definidos em C(S^m) ou em L^1(S^m), seja uma aproximação da identidade. Nossa proposta é estudar aproximação da identidade em espaços adequados, a serem determinados, quando X é o fecho do exterior da esfera S^m. A outra parte do projeto está totalmente relacionada com núcleos positivos definidos em S^m e aqui propomos três temas: caracterizar os núcleos estritamente positivos definidos via o método de Musin [42], estudar a diferenciabilidade de núcleos positivos definidos e então, determinar em quais condições o núcleo resultante ainda é positivo definido e finalmente investigar operadores integrais, gerados por núcleos positivos definidos, sobre o decaimento de seus autovalores nos casos em que os núcleos geradores estão definidos em S^m ou então na esfera unitária do espaço complexo C^m. (AU)
| Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio: |
| Mais itensMenos itens |
| TITULO |
| Matéria(s) publicada(s) em Outras Mídias ( ): |
| Mais itensMenos itens |
| VEICULO: TITULO (DATA) |
| VEICULO: TITULO (DATA) |