Busca avançada
Ano de início
Entree


Sobre G-aplicações entre esferas em cohomologia e uma representação do Grafo de Reeb como subcomplexo de uma variedade

Texto completo
Autor(es):
Nelson Antonio Silva
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Denise de Mattos; Alice Kimie Miwa Libardi; Waclaw Boleslaw Marzantowicz; Caio Jose Colletti Negreiros; Pedro Luiz Queiroz Pergher
Orientador: Denise de Mattos; Waclaw Boleslaw Marzantowicz
Resumo

Bartsch (BARTSCH, 1993) introduziu uma teoria de índice cohomológico, conhecida como o length, para G-espaços, no qual G é um grupo de Lie compacto. Apresentamos o cálculo do length de G-espaços os quais são esferas de cohomologia e G = (Z2)k, (Zp)k ou (S1)k, k &ge; 1. Como consequências, obtemos um teorema de Borsuk-Ulam neste contexto e damos condições suficientes para a existência de aplicações G-equivariantes entre uma esfera de cohomologia e uma esfera de representação quando G = (Zp)<sup<k. Também, uma versão Bourgin-Yang do teorema de Borsuk-Ulam é apresentada. Como segunda parte desta tese, uma nova definição do grafo de Reeb R( f) de uma função suave f : MR com pontos críticos isolados, como um subcomplexo de M é dada. Para isto, um complexo 1-dimensional &Gamma; (f ) mergulhado em M e equivalente por homotopia a R( f ) é construído. Como consequência, mostramos que para toda função f sobre uma variedade com grupo fundamental finito, o grafo de Reeb de f é uma árvore. Se &pi;1(M) é um grupo abeliano, ou mais geralmente, um grupo amenable1, então R( f ) conterá no máximo um laço. Finalmente, é provado que o número de laços do grafo de Reeb de toda função sobre uma superfície Mg é estimado superiormente por g, o genus de Mg. Os resultados desta segunda parte estão publicados em (KALUBA; MARZANTOWICZ; SILVA, 2015). (AU)

Processo FAPESP: 11/23610-3 - Invariantes topológicos de problemas mini-max com simetria
Beneficiário:Nelson Antonio Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado