Busca avançada
Ano de início
Entree


Otimização de um processo industrial de produção de isopreno via redes neurais.

Texto completo
Autor(es):
Rita Maria de Brito Alves
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Data de defesa:
Membros da banca:
Cláudio Augusto Oller do Nascimento; Saul Gonçalves D'Ávila; Roberto de Campos Giordano; Frank Herbert Quina
Orientador: Cláudio Augusto Oller do Nascimento
Resumo

Este trabalho descreve a aplicação de redes neurais \"feed-forward\" com três camadas em diferentes áreas da Engenharia Química. O objetivo principal do projeto é a modelagem, simulação e posterior otimização do processo de produção de isopreno empregando técnicas de redes neurais em substituição as equações de modelagem fenomenológica. A planta industrial testada é a unidade de produção de isopreno da BRASKEM (antiga COPENE). O sistema consiste essencialmente de um reator de dimerização e uma série de colunas de destilação. Uma vez que redes neurais são capazes de aprender eficientemente o processo a partir de informações extraídas diretamente de dados da planta, para este trabalho o modelo de rede neural gerado foi construído a partir de dados históricos operacionais coletados a cada 15 minutos durante o período de 1 ano. Em uma primeira etapa é realizada a análise dos dados operacionais de modo a detectar e eliminar erros grosseiros e sistemáticos. Em seguida, a modelagem e simulação do processo são realizadas. O modelo de redes neurais gerado é, então, empregado na otimização qualitativa/quantitativa do processo, construindo um \"grid\" de busca detalhado da região de interesse, através um mapeamento completo da função objetivo no espaço das variáveis de decisão. A segunda etapa diz respeito à predição de azeótropos, visando um melhor entendimento do comportamento do sistema da seção de extração de isopreno. Nas duas etapas, a grande vantagem em utilizar modelos de redes neurais, além de ajustar dados, é a capacidade que estes apresentam em representar eficientemente sistemas multivariáveis, complexos e não lineares, aprendendo o sistema, sem o conhecimento das leis físicas e químicas que o regem. Comparações entre a predição dos modelos propostos e os dados experimentais foram executadas e resultados muito bons foram conseguidos do ponto de vista industrial. ) Esta metodologia fornece informações interessantes e de maior compreensão para a análise dos engenheiros de processo do que os procedimentos convencionais correspondentes. Além disso, este trabalho mostra que a metodologia de redes neurais é promissora para varias aplicações indústrias, tais como análise de dados, modelagem, simulação e otimização de processos, bem como predição de propriedades termodinâmicas. (AU)

Processo FAPESP: 99/00664-7 - Otimização de processo industrial de produção de isopreno via redes neurais
Beneficiário:Rita Maria de Brito Alves
Modalidade de apoio: Bolsas no Brasil - Doutorado