Involuções em anéis de grupo e em anéis de loop alternativos
Estruturas algébricas das álgebras báricas, RA loops e códigos lineares
![]() | |
Autor(es): |
Osnel Broche Cristo
Número total de Autores: 1
|
Tipo de documento: | Tese de Doutorado |
Imprenta: | São Paulo. |
Instituição: | Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI) |
Data de defesa: | 2003-08-29 |
Orientador: | Francisco Cesar Polcino Milies |
Resumo | |
Sejam R um anel comutativo com unidade e G um grupo. O anel de grupo RG tem uma involução natural, *, que aplica cada elemento do grupo em seu inverso ('g IND.*' = 'G ind. -1', g pertencente a G). Esta tese é dedicada ao estudo dos elementos simétricos e anti-simétricos de RG, com respeito a involução *, cujos conjuntos denotemos por RG 'POT +' e RG 'POT -', respectivamente. Estudamos a comutatividade de RG 'POT +', isto é, sob que condições o conjunto RG 'POT +' é um subanel de RG. O estudo foi dividido em dois casos dependendo da característica de R ser diferente de 2 ou não, como acontece sempre que se trabalha com anéis com involução. Em ambos os casos caracterizamos completamente os grupos G quaisquer, tais que RG 'POT +' é comutativo. Depois estudamos a comutatividade de RG 'POT -', memso que este conjunto não forme um subanel associativo mas sim um anel não associativo, quando considerado RG com o produto de Lie [x,y] = xy - yx. Também aqui dividimos o estudo em dois casos dependendo da característica de R e damos uma caracterização completa dos grupos G tais que RG 'POT -' é comutativo. Finalmente, no capítulo III, caracterizamos os grupos G, de torção, tais que o conjunto das unidades simétricas de RG é um subgrupo (AU) | |
Processo FAPESP: | 99/04759-2 - Anéis de grupo |
Beneficiário: | Osnel Broche Cristo |
Modalidade de apoio: | Bolsas no Brasil - Doutorado |