Busca avançada
Ano de início
Entree


Biomarcadores baseados em aprendizado de máquina para customização de tratamentos de reabilitação robótica para pacientes com AVC

Texto completo
Autor(es):
Caio Benatti Moretti
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Alexandre Cláudio Botazzo Delbem; Anselmo Frizera Neto; João Pereira Leite; Rodrigo Fernandes de Mello
Orientador: Alexandre Cláudio Botazzo Delbem
Resumo

Acoplados a sensores, robôs para reabilitação de AVC descrevem o comportamento motor de pacientes como grandezas cinemáticas e dinâmicas, pouco exploradas no contexto de ciência de dados, devido à custosa tarefa de obter um volume significativo de dados. Além disso, a definição de biomarcadores para uma avaliação mais confiável da evolução do paciente permanece um problema aberto na literatura. Quatro estudos diferentes foram conduzidos com o objetivo de abordar tal questão. É proposta também uma ferramenta modular para organizar programas para análise de dados, com cálculos de mais de vinte métricas implementadas. O primeiro estudo consiste em um método puramente baseado em dados para definir uma região no espaço de dados, aludindo a um estado de reabilitação, baseado na incerteza da classificação de lados hemiparéticos de pacientes com AVC crônico. Nosso segundo estudo levantou evidências de que a tDCS anódica pode ter uma interação desvantajosa com o hemisfério afetado em pacientes com déficis muito severos dos membros superiores. O terceiro estudo correlaciona as métricas implementadas com escalas clínicas tradicionais, de forma que os modelos de aprendizado de máquina treinados possam desempenhar o mesmo papel de forma quantitativa e determinística, eliminando a natureza subjetiva dos métodos tradicionais de avaliação. Descobrimos que utilizar o modelo treinado com dados de apenas de um tipo de robô (ombro/cotovelo ou pulso) para estimar escalas clínicas é tão eficiente quanto combinar dados de ambos. Encontramos no quarto estudo evidências, sob uma perspectiva clínica, de um potencial de previsão de resultados clínicos de pacientes em estágios iniciais do tratamento. Nossos resultados indicam a possibilidade de melhorar o processo de tomada de decisão alertando, ao final da segunda sessão, se o paciente potencialmente não apresentará uma resposta significativa à terapia. Os projetos aqui descritos avançam o estado da arte no desenvolvimento de biomarcadores para avaliar e acompanhar o progresso do paciente em terapia robótica; propõem padrões a fim de simplificar o compartilhamento de dados; simplificam os estudos clínicos com amparo estatístico, bem como a ferramenta proposta, e otimizam a tomada de decisão clínica, impactando o orçamento em tratamentos de reabilitação e otimizando recursos do paciente para uma melhor qualidade de vida. (AU)

Processo FAPESP: 18/26493-7 - Avaliação do progresso de pacientes com AVC em tratamentos de reabilitação robótica
Beneficiário:Caio Benatti Moretti
Modalidade de apoio: Bolsas no Brasil - Doutorado