Busca avançada
Ano de início
Entree


Algoritmos exatos para problemas de dilatação mínima em grafos geométricos

Texto completo
Autor(es):
Aléx Fernando Brandt
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Data de defesa:
Membros da banca:
Cid Carvalho de Souza; Eduardo Candido Xavier; Sebastián Alberto Urrutia
Orientador: Pedro Jussieu de Rezende; Cid Carvalho de Souza
Resumo

Seja P um conjunto de pontos no plano. O grafo geométrico de P, G(P) = (P, E), é o grafo ponderado completo cujos vértices correspondem aos pontos de P e no qual o custo de uma aresta {i, j} é dado pela distância Euclidiana entre os pontos i e j. Inicialmente, considere um problema genérico em que se quer construir uma rede com boa qualidade de conexão ligando um conjunto de locais representados por pontos no plano. Em muitas aplicações deste tipo, o problema pode ser modelado com o auxílio de um grafo geométrico. Isso ocorre quando, por exemplo, para um par de pontos, a medida de qualidade é definida como a razão entre o comprimento do menor caminho que os conecta na rede projetada e a respectiva distância Euclidiana. Esta razão determina a dilatação daquele par de pontos na rede. Já a dilatação da rede construída em si é dada pela dilatação máxima sobre todos os pares de pontos. Nesta dissertação apresentamos métodos exatos para resolução dos problemas dedicados a encontrar uma árvore geradora ou uma triangulação planar de dilatação mínima, denominados, respectivamente, Problema da Árvore Geradora de Dilatação Mínima (MDSTP) e Problema da Triangulação de Dilatação Mínima (MDTP). Os métodos descritos são compostos principalmente pela formulação, redução e resolução de programas lineares inteiros mistos. A redução do tamanho destes modelos matemáticos é feita explorando-se a geometria dos problemas por meio de rotinas que determinam a presença ou da ausência de certos elementos da formulação em soluções com dilatação menor ou igual ao limitante primal fornecido por uma heurística. A aplicação destas rotinas em uma fase de pré-processamento permite uma redução significativa do tamanho do modelo levando à aceleração do seu tempo de resolução. Com a combinação destas técnicas obteve-se, pela primeira vez, soluções comprovadamente ótimas de instâncias até 20 pontos para o MDSTP e até 70 pontos para o MDTP. Os problemas e suas formulações, bem como suas formas de redução e de resolução, são apresentados em detalhes. Além disso, são feitas análises de desempenho computacional não só dos métodos exatos, mas também de algoritmos propostas por outros autores (AU)

Processo FAPESP: 12/17965-6 - Limitantes duais e algoritmos exatos para problemas de dilatação mínima em grafos geométricos
Beneficiário:Alex Fernando Brandt
Modalidade de apoio: Bolsas no Brasil - Mestrado